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We have used canonical variational transition-state theory with multidimensional tunneling contributions (CVT/
MT) to calculate 21 kinetic isotope effects (KIE) for the addition of hydrogen atom to ethylene. The potential
energies are obtained by variable scaling of external correlation (VSEC). The reorientation of the dividing
surface (RODS) algorithm is employed so that the same reaction path can be used for every isotopic substitution.
The results show the importance of the tunneling effect for explaining the trends in the KIEs in this almost
barrierless reaction. We have predicted the regioselectivity for three different isotopically substituted substrates
and have shown how the addition to the most substituted carbon is kinetically favored, especially at low
temperature. However, our calculations show no cis/trans selectivity for the isotopically substituted ethylene
substrate.

1. Introduction

The addition of a hydrogen atom to ethylene constitutes the
simplest radical addition to an olefin. This reaction has been
extensively studied both experimentally1-4 and theoretically.5-10

The mechanism of the process is now well understood and can
be approximately represented by the following scheme:

where C2H5* is a vibrationally hot ethyl radical11 and M is a
third body. Assuming that the steady-state approximation is valid
for the concentration of the vibrationally hot ethyl radicals, the
apparent bimolecular rate coefficient for addition will be

where [M] is the concentration of the third body. More
realistically, one would recognize that ethyl radicals with
different total energies decompose at different rates, leading to
energy-dependentkd.

Experimentally, a major difficulty in studying the addition
reaction is sorting out the pressure and energy dependences and
obtaining an elementary rate coefficient for each step. However,
the situation becomes considerably simplified in the high-
pressure limit becausekapp reduces tok1; furthermore, the hot
radicals may be assumed to be fully equilibrated, sokd becomes
a simple function of temperatureT, and k1(T)/kd(T) ) K(T),
whereK is the equilibrium constant for H+ C2H4 h C2H5.
There now exists a good consensus on the various experimental
values for the elementary addition1f,i,k,n,s,u,2,3and dissociation1d,e,q,t,v

rate coefficientsk1(T) and kd(T) corresponding to this high-
pressure limit, and recommended expressions for both the
addition and the dissociation reactions have been proposed.1v

The present paper will be concerned entirely with the high-
pressure association rate coefficient,k1(T), and those of its
isotopic derivatives,k2(T) throughk16(T), which are enumerated
in Table 1.

Radical addition reactions are difficult to study theoretically
because accurate electronic structure calculations are very
difficult. The difficulty results both from the low barrier found
for such reactions12 and from the difficulty of treating the
radicals because of their open-shell character.13 Theoretical
studies of the title reaction have raised two major subjects of
discussion: (1) whether transition-state theory (TST) and RRKM
theory can simultaneously fit the rates of the C2H4 + H addition
and the C2H5 unimolecular dissociation; (2) whether the
transition state is loose or tight. Work by Hase, Schlegel, and
co-workers7,8 seems to have answered both questions, namely,
“yes” for question 1 and “loose” for question 2. They proposed
a transition state with a fixed geometry for all temperatures
considered (astatictransition state), and they obtained the final
rate constants using conventional transition-state theory. The
potential energy barrier was fitted to reproduce the experimental
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results for both the addition and the dissociation reactions.
However, as pointed out in previous studies of the present
authors for the title reaction9 and for the related association
reaction C2H4 + OH f C2H4OH,14 variational optimization of
the location of the transition state for different temperatures
(dynamic transition states) is crucial for understanding the
looseness of addition reaction transition states and for making
quantitative estimates of entropies of activation. The latter were
shown to be the origin of the negative temperature dependence
of the rate constant for the OH addition to ethylene.

Most of the studies on H+ C2H4 have been carried out with
protium atoms and the perprotio ethylene molecule;1,5 however,
much attention has also been devoted to kinetic isotope effects
(KIEs). Cowfer and Michael2 carried out room-temperature
experiments for two partially deuterated versions of the reaction
and the fully deuterated version, and they used theory to try to
disentanglek1 from kapp. In particular, they applied conventional
transition-state theory in order to understand the distribution of
products. They fitted the parameters needed for the calculations
to the kinetic results obtained for the nondeuterated case. By
assuming that the geometry, energy, and force constants of the
transition state are invariant to isotopic substitution, they
concluded that the experimental KIEs are due exclusively to
differences in the zero-point-inclusive energy barriers of the
static transition states given by

where∆Vq is the potential energy of the saddle point relative
to reactants,εGq is the zero-point vibrational energy of the
transition state, andεGR is the zero-point vibrational energy of
reactants.

A later study by Nagase et al.6 employed the UHF level of
electronic structure theory and conventional transition-state
theory (TST). Their calculations yielded a transition-state model
that fits quite accurately the experimental data of Lee et al.1n

for the perprotio addition (Arrhenius parameters:ATST ) 10-10.3

cm3 molecule-1 s-1vsAExp ) 10-10.4cm3 molecule-1 s-1; Ea
TST

) 2.3 kcal/mol vsEa
Exp ) 2.1 kcal/mol). Encouraged by this

success, the authors studied the KIEs for D atoms and deuterated
ethylene, including the stereo- and regioselectivity of the
isotopically substituted substrates. They predicted that at low

temperatures, the D addition would be faster than the H addition
because of a smaller∆Va

Gq for the former, while at higher
temperatures the higher Arrhenius preexponential factor for the
H addition would invert this behavior. They also predicted a
slightly higher reactivity for the cis isotopomer in the X+
CHDCHD reaction (with X) H, D) and a general preference
for both H and D to add to the most deuterated carbon in the
series CHDCH2, CD2CH2, and CD2CHD. Both of these pro-
pensities are the opposite of what occurs in olefins bearing a
nonisotopic substituent.6 In light of more experience with
electronic structure theory, we now realize that electronic
structure calculations without electron correlation, as employed
in these pioneering studies, are not reliable,7 and the good
agreement with some of the experimental data was fortuitous.

Sugawara et al.3 measured the high-pressure limit of several
of the KIEs for the reactions of H and D with C2H4, CHDCH2,
and C2D4 over the temperature interval 206-461 K. They
compared their results to TST calculations based on the Nagase
et al.6 transition-state model with the Wigner tunneling formula.
The theoretical results differed qualitatively from the experi-
mental ones; this was especially so for the temperature depend-
ences, with very severe differences for the transition-state model
of Cowfer and Michael and less severe but still “very poor”
differences for the Nagase et al. parameters. The former problem
was attributed to a 120 cm-1 bending frequency at the transition
state in the Cowfer-Michael model, whereas this is increased
to 404 cm-1 in the Nagase et al. model. The errors in the
calculations with the Nagase et al. model were attributed to the
deficiency of conventional transition-state theory, in particular
to a large amount of recrossing of the conventional transition
state.

Muonium KIEs are expected to be very informative because
of the extremely large mass ratio, about 8.8, of H to Mu. (A
muonium atom is composed of an electron and a positive muon,
which is much lighter than a proton but still heavy enough for
the Born-Oppenheimer approximation to be reasonably ac-
curate.15) Garner et al.4 used the muon spin rotation method to
obtain rate constants for the addition processes Mu+ C2H4 and
Mu + C2D4. This technique allows the “direct” measurement
of the addition rate constantsk3 and k6, independent of the
pressure. When compared with the results of Sugawara et al.,3

the data of Garner et al. show very large increases in the rate
constants, with the ratiosk3:k1:k2 being approximately 4.0:1.4:
1.0 at∼500 K and 70.:1.4:1.0 at∼150 K. The study of Garner
et al. suggests that the rate increase for Mu might be explained
by tunneling through a loose, early transition state. This implies
that the effects of zero-point energy are less important than
assumed previously and that translational energy is mainly
responsible for promoting the reaction.

In previous studies we have shown how the inclusion of
multidimensional tunneling effects accounts quantitatively for
the curvature of the Arrhenius plots in the Mu+ C2H4,10 H +
C2H4,9,10and D+ C2H4 reactions.10 The objective of the present
paper is to examine the roles of variational location of the
dynamical bottleneck and multidimensional tunneling for the
whole range of primary and secondary KIEs of the title reaction.
This should allow us to obtain a much more complete picture
of this system, which is the simplest prototype for the kinetics
of radical additions to olefins and hence of great fundamental
interest. Table 1 lists the 22 different reactions considered in
this work.

To obtain a reliable potential energy profile for the dynamics
study, we have introduced9 a new way to extrapolate electronic
structure calculations to the limit of full configuration mixing

TABLE 1: Reactions Considered in This Study

subject reaction σ

unsubstituted
reaction

•H + CH2CH2 f •CH2CH3 R1 4

primary and •D + CH2CH2 f •CH2CH2D R2 4
secondary KIEs •Mu + CH2CH2 f •CH2CMuH2 R3 4

•H + CD2CD2 f •CD2CHD2 R4 4
•D + CD2CD2 f •CD2CD3 R5 4
•Mu + CD2CD2 f •CD2CMuD2 R6 4

regioselectivity •H + CD2CHD f •CD2CH2D R7a 2
•H + CD2CHD f •CHDCHD2 R7b 2
•H + CH2CHD f •CH2CH2D R8a 2
•H + CH2CHD f •CHDCH3 R8b 2
•D + CD2CHD f •CHDCD3 R9a 2
•D + CD2CHD f •CD2CHD2 R9b 2
•D + CH2CHD f •CH2CHD2 R10a 2
•D + CH2CHD f •CHDCH2D R10b 2
•H + CD2CH2 f •CH2CHD2 R11a 2
•H + CD2CH2 f •CD2CH3 R11b 2
•D + CD2CH2 f •CD2CH2D R12a 2
•D + CD2CH2 f •CH2CD3 R12b 2

stereoselectivity •H + cis-CHDCHD f •CHDCH2D R13 4
•H + trans-CHDCHD f •CHDCH2D R14 4
•D + cis-CHDCHD f •CHDCHD2 R15 4
•D + trans-CHDCHD f •CHDCHD22 R16 4

∆Va
Gq ) ∆Vq + ε

Gq - ε
GR (2)
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and a complete electron basis. This method, called variable
scaling of external correlation (VSEC), is based on the previ-
ously described scaled external correlation method (SEC).16 It
uses a geometry-dependent scale factor to combine a complete
active space self-consistent field (CASSCF) calculation with a
calculation that includes an appreciable amount of the dynamical
correlation energy. The new method, combined with variational
transition-state theory17 (VTST), allowed us to obtain realistic
potential energy surface information for direct dynamics18

calculations of the perprotio title reaction9 and also the D and
Mu additions to the unsubstituted substrate.10

The first step in traditional methods for computing VTST
rate coefficients and multidimensional semiclassical tunneling
probabilities is to calculate the minimum energy path (MEP),19-21

which is defined as the paths of steepest descent from the saddle
point to reactants and from the saddle point to products, as
calculated in an isoinertial coordinate system. (An isoinertial
coordinate system is any coordinate system in which the same
reduced mass is used for all possible directions of motion. The
MEP in isoinertial coordinates19,20is also called21 the “intrinsic”
reaction path.) The signed arc length along the MEP is called
the scalar reaction coordinates. By definition the MEP depends
on the atomic masses of the atoms involved in the reaction,
and therefore, a new MEP should be calculated for each isotopic
substitution. However, under the Born-Oppenheimer ap-
proximation, the potential energy surface for a system depends
on the atomic numbers but not on the masses of the nuclei
involved in a reaction. To take advantage of this, new
methods22,23have been developed for computing VTST reaction
rate constants including multidimensional tunneling contribu-
tions without having to evaluate the MEP at all or without
having to evaluate a new one for each isotopically substituted
reaction. These new methods have been successfully applied
to the calculation of reaction rates for several reactions.9,10,22-24

Therefore, only one reaction path needs to be constructed, and
it may be an MEP for the isotopically unsubstituted reaction or
it may be a distinguished-coordinate25 path (DCP), which is
independent of masses. In the present paper we use the latter
choice.

2. Methods and Calculations

2.1. Electronic Structure Calculations.Geometries, ener-
gies, and first and second energy derivatives were calculated
using theGaussian 94program.26 We recall that the general
notation X//Y27 denotes geometry optimization and Hessian
evaluation (for frequencies) at level Y followed by a single-
point energy calculation at level X. As usual, we omit //Y if Y
is the same as X. A consequence of this standard notation is
that by default X//Y calculations involve a level-Y Hessian,
whereas a level-X Hessian is the default for X calculations. As
usual,27 X and Y each has the form L/B, where L denotes the
Hartree-Fock or correlation level (i.e., the many-electron level)
and B denotes the one-electron basis.

Figure 1 shows the definitions of internal coordinates for the
stationary-point geometries in the system. Stationary-point
geometries (reactants, product, and saddle point) for reaction
R1 were optimized, and the harmonic vibrational frequencies
were calculated using quadratic configuration interaction with
single and double excitations28 (QCISD) and the 6-311G(d,p)
basis set.27 Previous work9,10 showed that this provides an
adequate basis for applying the VSEC method (see below) to
obtain quantitatively accurate results in the dynamical study of
reaction R1 and its reverse process.

To obtain reliable thermochemical properties for the addition
processes, we have also performed a calculation using the new

complete basis set method (CBS-RAD) that was specifically
designed for radicals by Mayer et al.13

A DCP has been constructed by fixing theRC-X distance (see
Figure 1) at different values and allowing the other degrees of
freedom to relax. In this way, we calculated 13 points along
the DCP on the reactant side of the saddle point and 8 along
the DCP on the product side. At the QCISD/6-311G(d,p) level
these points cover the intervalRC-X ) [1.5 Å, 2.9 Å]. The DCP
points are more concentrated around the saddle point than far
from it because this is where the variational transition states
are expected to be located and where tunneling is more likely
to occur. The energy of these points will be calledVDCP.

At each DCP geometryj (with j ) 1, 2, ..., 21), a generalized
normal-mode analysis29 in redundant internal coordinates30 has
been performed using a QCISD/6-311G(d,p) Hessian. (The
internal coordinates are curvilinear, which means the general-
ized-transition-state dividing surface is curved, which is more
physical than a hyperplane in Cartesian coordinates.) By
diagonalizing the Hessian with one direction projected out30-32

at each DCP point, we obtain the 3N - 7 ) 14 (whereN is the
number of atoms of the system) eigenvectorsLm

GT(j) corre-
sponding to the generalized normal-mode motions orthogonal
to the path and their corresponding eigenvalues. The latter
provide the generalized frequenciesωm(j) along the path (where
m labels one of the 14 generalized normal modes). Since an
MEP was not calculated, projecting out the frequencies by
projecting the local gradient31 obtained from the DCP optimiza-
tions may lead to unphysical results.22-24 Since MEP calcula-
tions are known from experience17,20,32-35 to lead to physical
reaction-path frequencies, this may be explained by the fact that,
in general, the DCP geometry does not lie on the MEP, and for
this reason the gradients obtained from the DCP calculation are
not parallel to the gradients one could obtain from an MEP
calculation. Thus, the recently developed RODS algorithm,22

in which the projected direction (which would be taken as the
gradient g(j) in a typical MEP calculation) is variationally

Figure 1. Definition of the geometrical parameters in Table 2 and
Figures 2 and 3.
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optimized (obtaining an optimized directionv(j)), has been
applied to obtain physical eigenvectors and generalized frequen-
cies along the DCP path by maximizing the generalized free
energy of activation at 0 K for each pointj. The resultingωm(j)
values are used to calculate the vibrationally adiabatic ground-
state potential energy curveVa

G(j). This is defined, at each DCP
point j, by22

whereVM is the minimum energy in the RODS dividing surface
at point j [VM(j) e VDCP(j)]. The determination ofVM is
described elsewhere.22

Finally, at each DCP point, and also at the stationary points,
several single-point energy corrections using the same 6-311G-
(d,p) basis set have been computed, namely, the following: (a)
quadratic configuration interaction with single and double
excitations and a quasiperturbative estimate of the effect of
connected triple excitations28 coupled to both single and double
excitations (QCISD(T)); (b) coupled cluster with single and
double excitations36 (CCSD) with the same kind of quasiper-
turbative estimate of the effect of connected triple excitations37

(CCSD(T)); (c) complete active space multiconfiguration SCF38

(CASSCF) using three electrons in three orbitals as in the
previous work;9,10 (d) second-order perturbation theory based
on the CASSCF state as a reference state39 (CASSCF-MP2).
The QCISD(T), CCSD, and CCSD(T) calculations are based
on an unrestricted Hartree-Fock reference state.

2.2. Reaction Coordinates. To variationally optimize the
transition-state geometry and to apply tunneling corrections with
the methods we will describe below, we need to map the RODS-
optimized DCP pointsj onto a reaction coordinates. This s is
taken as the signed distance in mass-scaled coordinates17,20along
the sequence of RODS-optimized points from the saddle point
(positive on the product side and negative on the reactant side).
In all cases the coordinates were scaled to a mass of 1 amu. To
calculate the distance between two consecutive pointsja ) i
and jb ) i + 1, we first ensure that the orientation of the
molecular system is consistent. This is accomplished by using
the algorithm proposed by Chen,40 which involves rotating the
Cartesian coordinates of pointjb in order to obtain a minimum
distance in mass-scaled coordinates between the two points. This
method also yields rotation matrices along the reaction path that
are used for ensuring that other reaction path quantities
(gradients and Hessians) are consistently aligned for each point
along the reaction path.

Because the Born-Oppenheimer approximation is assumed
to be valid, the potential energy surface does not depend on
the masses of the atoms. However, the reaction path, the value
of s, the moments of inertia, and the frequencies and curvature
of the reaction path do depend on the masses of the atoms.
Nevertheless, with the algorithms used here, no extra electronic
structure calculations are needed for various isotopic substitu-
tions. Although the same DCP points are used for every new
isotopic substitution, the RODS algorithm is reapplied for each
one of them.23

2.3. Dynamical Calculations.The first-level reaction-path
information (DCP geometries, optimized RODS geometries and
directions v(s), and energy second derivatives, all of them
calculated using the same molecular orientation or transformed
to the same orientation) and the higher-level single-point
energies along the first-level path are used to calculate high-
pressure association rate constants as functions of temperature.
These calculations are carried out by canonical variational

transition-state theory17,41 (CVT) with multidimensional tun-
neling corrections33-35 (MT), and the rate constants are denoted
k(T)CVT/MT. The CVT method involves calculating the standard-
state generalized-transition-state (GT) free energy of activation
profile defined by

whereR is the gas constant,kB is the Boltzmann constant,QGT-
(T,s) is the partition function for a generalized transition state
at a distances along the DCP from the saddle point as defined
above,K0, in cm3 molecule-1, is the reciprocal of the standard-
state concentration, andΦR(T) is the reactant partition function
per unit volume. Note thatVM(s) depends on masses because
the RODS path depends on masses. The vibrational and
rotational contributions to the free energy also depend on
masses. For each mass combination, the variational transition
state is optimized by finding the values ) s*(T) at which
∆GGT,0(T,s) is a maximum, and the CVT rate coefficient is
defined by

whereσ(s) is the reaction path symmetry factor, which accounts
for the number of equivalent reaction paths. (Note that all the
symmetry numbers are omitted in eq 4.)

In general,42

wheren is the number of identical transition states,σR is the
usual rotational symmetry number for the reactants (it would
be the product of these symmetry numbers if there were two
molecular reactants, but in the present case one reactant is an
atom), andσGT(s) is the usual rotational symmetry number for
the generalized transition state ats. In our applications, as usual,
σGT is independent ofs; thus,σ(s) becomes a constantσ.

In the perprotio reaction, the symmetry point groups for
reactants and transition state areD2h andCs, respectively, with
symmetry numbers 4 and 1,43 andn ) 1, yielding σ ) 4 for
the addition process in R1. This agrees with our intuitive
notation that there are four reaction paths corresponding to top-
side and bottom-side addition to both the left and right side of
ethylene. For X+ CH2CHD f CH2CHDX, with X ) H, D, or
Mu, the point groups areCs for reactants andC1 for the transition
state, respectively, leading to42 σR ) 1 andσGT ) 1. In this
case though,n ) 2 because the transition state is chiral and has
an optical isomer. (The case of X) H deserves a comment;
ordinarily one would not expect a CH2XY center to be a center
of chirality, but the two C-H bonds at the addition center are
very different at the transition state.) Therefore,σ ) 2. Again,
this is intuitively reasonable, since X can add from the top or
bottom. Identical considerations apply to the transition state for
X + cis-CHDCHD, soσGT ) 1, n ) 2, but now the reactant is
C2V, soσR ) 2 andσ ) 4. For X+ trans-CHDCHD, the reactant
hasC2h symmetry, soσR ) 2, σGT ) 1, n ) 2, and soσ ) 4.
For X + CH2CD2, the reactant hasC2V symmetry, and we have
σR ) 2, σGT ) 1, n ) 1, so again,σ ) 2. Table 1 gives the
symmetry factors for each of the association reactions studied
in this work.

∆GGT,0(T,s) ) RT[VM(s)

kBT
- ln

QGT(T,s)

ΦR(T)K0] (4)

kCVT(T) )
kBT

h
K0 min

s
{σ(s) exp[-

∆GGT,0(T,s)
kBT ]} (5)

σ(s) ) nσR

σGT(s)
(6)

Va
G(j) ) VM(j) +

1

2
p ∑

m)1

3N-7

ωm(j) (3)
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Tunneling corrections are included as a multiplicative factor,
called the ground-state multidimensional tunneling (MT) trans-
mission coefficientκMT(T),

We consider two levels of tunneling corrections in this work,
namely, zero-curvature tunneling19,32 (ZCT) and centrifugal-
dominant small-curvature tunneling34,35 (SCT). To calculate
the SCT tunneling probability, we need the reaction-path curva-
ture at s for each modem. The components31 BmF(s) of the
curvature vector are computed from the generalized normal-
mode eigenvectorsLm(s), along with the RODS directionv(s),
as follows:24

In eq 4 for∆GGT,0(T,s), rotations are treated by the classical
rigid rotor approximation, and vibrations are treated as quantum
mechanical separable harmonic oscillators, except for the lowest
normal mode in the C2H5 generalized transition states and
product, corresponding to rotation about the C-C bond, which
is treated with the hindered rotor44 approximation. To obtain
the properties required for the CVT calculation (i.e., energy,
frequencies, determinant of moment of inertia tensor for overall
rotation, reduced moment of inertia of the hindered rotor, and
reaction-path curvature components) as continuous functions of
the parameters, we interpolated the values obtained at the 21
+ 3 (nonstationary plus stationary) points on the reaction path
using the interpolated-VTST-by-mapping algorithm.45

All dynamical calculations were carried out using a modified
version of the Polyrate code, version 7.9.46

2.4. VSEC Calculation.If the single-point energies computed
at the various electron-correlation levels are used directly, the
agreement of the calculated rate constants with the experimental
results is very poor9,10because of the failure of standard ab initio
methods to predict reliable potential energy surfaces for radical
addition reactions.8-10,12-14 To obtain a potential energy surface
that is useful for our KIE calculations, we have used the recently
developed9 VSEC procedure. The basis of this method is the
scaled external correlation (SEC) method,16 which is based on
combining the results of two ab initio calculations: a CASSCF
calculation that accounts for internal (also called static) electron
correlation effects and a multireference configuration interac-
tion47 (MRCI) that accounts for an appreciable fraction of the
external (or dynamical) correlation. Then, in the SEC method,
the accurate energy is approximated by

where we assume that the internal correlation is correctly
introduced by the CASSCF term38,47 and that the fraction of
the dynamical correlation energy recovered by the MRCI
calculation with a given basis set can be represented by a
constantF.16 The VSEC approach considers thisF to be a
function of some distinguished coordinate,RC-X in this work,
that indicates the degree of progress in a direction at least
approximately parallel to the reaction path. The functional form
used here is the same as in ref 10 and is a slight modification
of the methodology described in ref 9. It is based on the bond
energy-bond order (BEBO) scheme:48

where F0 and F1 are adjustable unitless parameters,γ is an
adjustable parameter with units of length,RC-X is defined in
Figure 1, andRC-X,e is theRC-X distance at the QCISD/6-311G-
(d,p) C2H5 equilibrium geometry (RC-X,e ) 1.103 Å). The choice
of an exponential, rather than say a Gaussian, is based on the
fact that the valence energy varies exponentially with distance
along a bond-making coordinate.49 At the C2H4 + H reactant
structure,RC-X is equal to infinity, soF for reactants isF0.
Analogously, at the C2H5 product (P) structure, eq 10 reduces
to F0 + F1 for products.

In ref 9, the MRCI method,50 which was used in the original
SEC theory but which is not size-consistent, was replaced by a
QCISD(T) calculation. For some systems CCSD(T) calculations
have been found to be more reliable than QCISD(T),51 and for
this reason we switched from QCISD(T) to CCSD(T) for the
DCP calculations in ref 10 and the present work. A second way
in which the present work and ref 10 differs from ref 9 is that
we calculated the DCP geometries at the QCISD level rather
than the MP2 level (the reason for this is discussed in section
3.1). A third difference from ref 9 is the procedure for obtaining
the three parameters needed in eq 10. In ref 9, the parameters
were varied manually until good agreement with experimental
results was obtained. Now, a genetic algorithm52,53 is used
instead. The fitness function for the genetic algorithm calculation
has been chosen to be of a very simple form:

wheren1 andnd are the number of experimental data fork1(T)
and kd(T) used in this work and are equal to 27 and 14,
respectively. We note thatF1 in eq 10 is the difference in the
fraction of external correlation energy recovered by the CCSD-
(T)/6-311G(d,p) calculation of the reactants and the products,
which is related to the value calculated for classical potential
energy difference∆V of the products with respect to reactants,
which, in turn, strongly affects the calculated equilibrium
constant for the addition reaction. For convenience then, the
adjustable parameters in the genetic algorithm are taken asγ,
F0, and the classical energy of reaction∆V rather thanγ, F0,
and F1. The three parameters are adjusted to simultaneously
reproduce the high-pressure experimental rate constants for the
addition and the unimolecular dissociation, the ratio of which
is the equilibrium constant. This procedure allows us to get a
consistent energy profile that will be used for calculating the
various isotope effects in reaction R1.

3. Results and Discussion

3.1. Electronic Structure Calculations without Scaling.In
Table 2 we present the structural parameters obtained for the

kCVT/MT(T) ) κ
MT(T)kCVT(T) (7)

BmF(s) ) -[sin(s)]∑
i)1

3N dνi(s)

ds
Li,m

GT(s) (8)

ESEC) ECASSCF+
EMRCI - ECASSCF

F
(9)

F(RC-X) ) F0 + F1 exp(-
RC-X - RC-X,e

γ ) (10)

fitness) -{x∑
i)1

n1

{ln[k1
exp(Ti)] - ln[k1

CVT/MT(Ti)]}
2

n1

2
+

x∑
i)1

nd

{ln[kd
exp(Ti)] - ln[kd

CVT/MT(Ti)]}
2

nd

2
} (11)
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stationary points of the reaction at the QCISD/6-311G(d,p) level
of theory. The agreement with previous calculations8,9 and
experimental54 values (where available) is good. For the ethyl
radical, the calculations reflect the expected lengthening of the
RC-C distance, and theRC-X and R C-Z distances are clearly
longer thanRC-Y, which maintains a value close to the one it
has in ethylene. In the saddle point structure, the C2H4 moiety
resembles ethylene, withRC-C only 0.014 Å longer than in
reactants. The distanceRC-X of the attacking hydrogen from
the attached carbon is 1.976 Å, which is consistent with the
early character of the transition state for this reaction, as we
noted in our previous work.9

The first six rows of Table 3 summarize the results for the
energetics calculated without scaling. (The last row of this table
will be explained in section 3.2.) The quantity∆V is the classical
energy of the reaction, i.e., the potential energy of the ethyl
radical with respect to the reactants at infinite separation. The
first row gives the results we obtained by the complete basis
set method for radicals13 (CBS-RAD), which will be used as a
standard for testing the methods that are more practical for
dynamics. The values computed at the CASSCF level under-
estimates∆V. Since CASSCF includes internal (static) correla-
tion energy, but a negligible portion of the external (dynamic)
correlation, we conclude that the latter changes very appreciably
over the course of the reaction. CASSCF-MP2 and QCISD
include dynamical correlation energy and yield more accurate
results, but they are still not quantitatively accurate. The single-
point energy calculations performed at QCISD(T) and CCSD-
(T) levels, which each includes two quasiperturbative triple
excitation terms, do not differ significantly from the value
computed with the CBS-RAD level.

The forward and reverse potential energy barriers at different
levels are also given in Table 3. The QCISD/6-311G(d,p) value
corresponds to the energy of the optimized saddle point at that
level of calculation. In all cases we carried out energy
calculations at this structure, and these are given in theVSP

columns. ForL ) QCISD(T), CCSD(T), CASSCF(3,3), and
CASSCF(3,3)-MP2, we also calculated the maximum energy

at the L/6-311G(d,p)//QCISD/6-311G(d,p) level along the
QCISD/6-311G(d,p) DCP. Although the CBS-RAD method is
not designed for barrier heights, and this result must be taken
with caution, the value obtained at this level for the potential
energy surface is clearly below the values obtained with the
above-mentioned methods.

In Figure 2, the potential energy profiles on the QCISD/6-
311G(d,p) DCP at different levels of theory are plotted versus
the RC-X distance. Note thatRC-X distance decreases as the
system goes from reactants to products. Thus, in Figure 2, as
in all the plots versus theRC-X distance in this article, the
products are on the left-hand side and the reactants are on the
right. From Figure 2 it is clear that the position of the maximum
energy along the reaction path is dependent on the level of
calculation. Thus, the lower is the calculated potential energy
barrier for the addition, the larger is the value ofRC-X at the
maximum of the curve. At the QCISD level, for example,RC-X

) 1.976 Å at the maximum of the potential energy profile, while
at the CASSCF level it isRC-X ) 1.904 Å. This is consistent
with the Hammond postulate,55 and it shows how dangerous it
is to use only single-point calculations at an optimized saddle
point structure for reactions with flat potential energy surfaces.
In the case of the CBS-RAD calculation, the maximum of the
CBS-RAD//QCISD/6-311G(d,p) potential energy profile is
expected to be atRC-X > 1.976 Å, with a somewhat higher
value for the energy barrier than the 1.32 kcal/mol calculation
reported in Table 3, which is based on the QCISD/6-311G(d,p)
saddle point geometry.

TABLE 2: Geometries (Distances in Å and Angles in degs)
Calculated by QCISD/6-311G(d,p) Method

QCISD/6-311G(d,p)

coordinatea exptlb C2H4 C2H4 saddle point C2H5

RCC 1.339 1.339 1.353 1.499
RC-X 1.976 1.103
RC-Y 1.085 1.087 1.087 1.086
RC-Z 1.085 1.087 1.087 1.096
θ1 106.7 111.6
θ2 121.1 121.6 121.4 120.5
θ3 121.1 121.6 121.1 111.3

a See definitions in Figure 1.b Reference 54.

TABLE 3: Energetics (kcal/mol) for the C2H4 + H f C2H5 Reactiona,b

method ∆V Vq VSP Vq - ∆V VSP- ∆V

CBS-RAD//QCISD/6-311G(d,p) -39.57 (-33.90) 1.32 (2.99) 40.89 (36.89)
QCISD/6-311G(d,p) -41.13 3.60 3.60 44.73 44.73
CASSCF(3,3)/6-311G(d,p)//QCISD/6-311G(d,p) -30.72 8.38 7.94 38.65 38.21
CASSCF(3,3)-MP2/6-311G(d,p)//QCISD/6-311G(d,p) -35.94 6.75 6.50 42.43 42.18
QCISD(T)/6-311G(d,p)//QCISD/6-311G(d,p) -39.36 3.61 3.61 42.97 42.97
CCSD(T)/6-311G(d,p)//QCISD/6-311G(d,p) -39.39 3.75 3.75 43.14 43.14
VSEC//QCISD/6-311G(d,p) -40.18 (-34.60) 1.72 (2.58)c 1.60 (2.50) 41.90 (37.18) 41.78 (37.19)

a ∆V is the classical energy of reaction.Vq andVSP represent two different ways to estimate the classical barrier height. The quantityVq is the
maximum of the curve of high-level single-point energy calculations along the DCP, which is calculated at the QCISD/6-311G(d,p) level. TheVSP

values are high-level single-point energy calculations at the QCISD/6-311G(d,p) saddle point.b Values in parentheses are zero-point-energy-inclusive
values (with zero-point energy calculated at the QCISD/6-31G(d) harmonic level scaled by a factor of 0.9776 for CBS-RAD and at the unscaled
QCISD/6-311G(d,p) harmonic level for VSEC calculations.c s ) -0.084 Å, whereRC-X ) 2.055 Å and the zero-point energy is 32.86 kcal/mol.

Figure 2. Potential energy profiles along the QCISD/6-311G(d,p)
distinguished-coordinate path at various levels of theory for the C2H4

+ H reaction vs theRC-X distance. The basis set is 6-311G(d,p) for all
these calculations.
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In Figure 3 several internal coordinates along the QCISD/6-
311G(d,p) DCP have been plotted versusRC-X. The vertical
dotted line indicates the position of the QCISD/6-311G(d,p)
saddle point. The angle between the attacking hydrogen and
the two carbons of ethylene,θ1, remains almost constant as the
reaction takes place. Since the system retainsCs symmetry all
along the DCP, the angleæ1 corresponds to both the torsions
5-C-C-4 and 5-C-C-3 (see Figure 1) and indicates the
development of nonplanarity at the carbon that retains sp2

hybridization in the ethyl radical. This sp2 carbon stays almost
planar during the reaction, andæ1 changes only slightly from
its initial value of 90°. More significant effects can be seen in
the evolution of the other two internal coordinates in Figure 3.
Still reading from right to left, we see that theRC-C distance
remains almost constant until the saddle point. Then, a dramatic
change occurs in the internal coordinates related to the C-C
bond. On one hand, theRC-C distance increases rapidly until it
reaches its ethyl radical value. Simultaneously, the nonplanarity
of the environment of the carbon that is attacked, represented
in Figure 3 by the angleæ1-C-C-4, increases rapidly. Figure 3
shows that the energy barrier for the addition process occurs
very early in the process of making the C-C double bond.

In Figure 4 the expectation value of theS2 operator,〈S2〉, is
plotted along the DCP. The value of〈S2〉 along the DCP exceeds
the value corresponding to a doublet, which is 0.75, because of
contamination from higher multiplicity states. This spin con-
tamination is the reason that we have used the QCISD method
as the lower level in the present paper; in particular, experience
has shown56 that QCISD is less sensitive to spin contamination
than the Møller-Plesset second-order perturbation theory (MP2)
used in ref 9.

3.2. VSEC Calculations.Figure 4 also shows the Euclidean
norm of the t1 vector of the coupled-cluster wave function,
denoted ||t1||. A value of ||t1|| higher than 0.02 has been
proposed57 as an indicator of the need for a multireference
electron correlation procedure. Figure 4 shows that this diag-
nostic does exceed 0.02 over the critical part of the reaction
path for our reaction. However, the MRCI calculations carried
out by Hase et al.8 on this system gave essentially the same
result as the calculations at the QCISD(T) level. Because the
energy barrier predicted by MRCI calculations was too high,
they were unable to predict the reaction rates for the perprotio
title reaction. Similarly, all of our ab initio calculations
overestimate the barrier height, as can be seen in Figure 2 and
Table 3. If any of the potential energy curves shown in Figure
2 are used to calculate the rate constants for the title reaction,

the computed values do not match the experimental results; the
calculated rates are much too low. The main reason for this
failure is that the ab initio barrier heights for the addition reaction
are too high. In our previous work,9 we developed the new
VSEC technique for obtaining reliable potential energy surfaces
for addition reactions, as outlined in section 2.4. The VSEC
energy profile is obtained from eqs 9 and 10.

By use of a genetic algorithm to maximize the fitness shown
in eq 10, the final parameters for the VSEC calculation in eq 9
areF0 ) 0.6243,γ ) 0.1801 Å, and∆V ) -40.18 kcal/mol.
From these values, one can easily calculate thatF1 ) 8.74×
10-3. In the last row of Table 3, the VSEC values for the
classical energy of the reaction and the energy barriers for the
addition and dissociation reactions are given. The classical
energy of the reaction obtained from the VSEC calculation that
fits the best the experimental rate constants is in quite good
agreement (0.6 kcal/mol) with the CBS-RAD calculation. The
barrier heights are also remarkably similar, but this is less
meaningful, since the CBS-RAD value for the energy barrier
was calculated at the QCISD/6-311G(d,p) saddle point structure,
which corresponds to a shorterRC-X distance (RC-X ) 1.976
Å) than the correspondingRC-X distance at the maximum of
the potential energy profile of the VSEC calculation (RC-X )
2.07 Å). (Recall that zero-point energeis are calculated in the
harmonic approximation in this paper.)

The vibrationally adiabatic barrier height obtained for reaction
R1 in the present study is 2.63 kcal/mol (ats) -0.042 Å where
RC-X ) 2.017 Å, the potential energy is 1.69 kcal/mol and the
zero-point energy is 32.94 kcal/mol, compared to the reactant
zero-point energy of 32.00 kcal/mol). This may be compared
to 2.70 kcal/mol obtained in ref 8 and to 2.58 kcal/mol in the
present study at the saddle point (which occurs ats ) -0.084
Å). (Recall that zero-point energies are calculated in the
harmonic approximation in this paper.)

3.3. Dynamical Calculations.The first point we wish to
discuss is the difference between canonical variational theory
(CVT) and conventional TST, with the latter based on the
location (s ) 0) of the maximum of the lower-level QCISD/
6-311G(d,p) potential energy along the original DCP (in the
notation of Table 3, this is the SP version of TST, not theq
version). Table 4 gives the ratio ofkTST to kCVT for three sample

Figure 3. Evolution of several geometrical parameters along the DCP
vs theRC-X distance.

Figure 4. Evolution of the expected value of theS2 operator,〈S2〉,
and of the Euclidean norm of thet1 vector of the coupled-cluster wave
function,T1, along the DCP vs theRC-X distance.
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reactions. This ratio measures the amount of recrossing of the
transition state that is eliminated by moving the transition-state
dividing surface from its conventional location on the basis of
single-level calculations to the variationally optimized dual-level
location at each temperature. The ratio is as large as 1.24 at
200 K and as large as 1.11 at 1000 K, but it is closer to unity
at 500 K. Furthermore, the ratio depends on temperature and
on the nature of the isotope substitution.

Although the kSP/kCVT ratios discussed in the previous
paragraph are interesting from a practical standpoint, we also
see thatkq/kSP ) 0.8-1.3, wherekq is our best estimate of the
conventional transition-state theory rate coefficient. This factor
is significant, since it means thatkq/kCVT differs fromkSP/kCVT

by this amount. Thekq/kCVT ratios have a more fundamental
significance because they measure the amount of recrossing that
can be minimized by improving the dynamical formulation.
These ratios are shown in the lower section of Table 4. These
results again show strong isotopic dependence. Recrossing of
the conventional transition state increases with temperature, up
to a factor of 1.3-1.5 at 1000 K.

Table 5 shows the values ofs at the canonical variational
transition states for the same three reactions that were included
in Table 4. This table shows that the locations of the variational
transition states depend systematically on temperature, becoming
tighter asT increases. The bottom half of Table 5 gives the
corresponding C-X distances (see Figure 1), obtained by quartic
interpolation from the output grid. We see a tightening of 0.09-
0.11 Å in this critical distance. In contrast to the values in Table
5, the maxima ofVMEP (as used to calculatekq) occur atRC-X

) 2.06 Å. Thus, the dynamical bottleneck may have a C-X
distance as much as 0.14 Å shorter than the saddle point. This
illustrates that saddle point calculations alone are insufficient
for a full understanding of the dynamics of association reactions
such as the one studied here.

The localized dynamical bottleneck locations of the previous
paragraph are most appropriate for characterizing the overbarrier
process (where “overbarrier process” refers to the reactive flux
coming from energies high enough that tunneling need not be

involved). The transmission coefficients indicate the increase
in the rate coefficient, relative to the contribution from the
overbarrier process, that is caused by tunneling. (They also
include the decrease due to nonclassical reflection, which cancels
a part of the increase due to tunneling.) Table 6 shows some
values of the transmission coefficient. The rate enhancement
by tunneling can be more than a factor of 2 at 200 K and
depends strongly on isotope.

3.4. Kinetic Isotope Effects.In the following paragraphs,
except in the discussion of the rule of the geometric mean, the
KIEs are defined as the ratioki/kj, wherekj represents the rate
coefficient for the isotopic substitution with greater mass and
ki represents the rate coefficient for the corresponding lighter
reaction. By definition, a KIE is “normal” if it shows a faster
reaction for the lighter isotope (and therefore, the KIE is larger
than unity) and it is “inverse” if the faster reaction occurs in
the heavier isotopically substituted system. For cases where no
confusion can result, we use H, D, and Mu as the subscriptsi
andj. For multiple substitution or to be perfectly unambiguous,
we use the reaction numbers in Table 1.

3.4.1. Primary Kinetic Isotope Effects.Table 7 presents the
results for the primary KIEs for the addition X+ C2H4, with X
) H, D and Mu (which correspond to reactions R1, R2, and
R3 in Table 1), with and without the inclusion of the tunneling
effect. Figure 5 shows the Arrhenius plots for these reactions
compared to the experimental results. The discrete symbols
correspond to the experimental values, and the lines correspond
to the theoretical predictions by means of the CVT/SCT
methodology. As explained above and in our previous work,9,10

the parameters obtained from the application of the genetic
algorithm fit the experimental reaction rates for the perprotio
reaction. Recall that these parameters (F0 ) 0.624,γ ) 0.180
Å, and ∆V ) -40.18 kcal/mol) will not be changed for the
study of the different KIEs in this work because they only affect
the potential energy surface, which, by means of the Born-
Oppenheimer approximation, is not changed with the different
isotopic substitutions.

In ref 10 we discussed the different trends of the two terms
in eq 7 for the addition reaction, and this will not be repeated
entirely here. However, it is worthwhile to outline the main
observations of that work. If we only use CVT, without inclusion
of the tunneling correction, to obtain the rate constants for
reactions R1, R2, and R3, the theoretical results are entirely
different from those in Figure 5 (see also Figure 1 in ref 10).
At low temperatures (T < 150 K), the relationship between the
CVT reaction rates iskD

CVT > kH
CVT > kMu

CVT. At high
temperatures, however, the relationship is inverted:kMu

CVT >
kH

CVT > kD
CVT. This inversion of the relative value of the rate

coefficients was noted previously by Nagase et al.,6 who used
conventional transition-state theory without any tunneling
correction. A totally different picture is obtained at low
temperatures when including the tunneling effect in the calcula-
tions. Now, the CVT/MT rate constants are sorted in the same
order at all temperatures, being higher for lighter isotopes. This
different behavior of reaction rates with and without the
inclusion of tunneling can also be seen in Table 7. The slopes
of the CVT KIEs as functions of temperature have signs opposite

TABLE 4: kSP/kCVT and kq/kCVT a

method T (K) R1b R11ab R12b

SP 200 1.05 1.05 1.24
500 1.01 1.03 1.05

1000 1.08 1.11 1.08
q 200 1.21 1.20 1.00

500 1.27 1.30 1.13
1000 1.44 1.47 1.29

a kSP is kTST calculated using a transition-state dividing surface at
the saddle point of the lower-level (QCISD) electronic structure
calculation, whereaskq is kTST calculated using a transition-state dividing
surface at the highest-energy point (obtained by interpolation) of the
higher-level (QCISD(T)) energy profile along the lower-level reaction
path.b These column headings are explained in Table 1.

TABLE 5: Value of s and RC-X (in Å) at Canonical
Variational Transition State

variable T (K) R1a R11aa R12ba

s 0 -0.042 -0.043 -0.110
200 -0.032 -0.032 -0.104
500 0.023 0.031 0.028

1000 0.058 0.063 0.043
RC-X 0 2.017 2.016 2.055

200 2.007 2.006 2.050
500 1.954 1.949 1.956

1000 1.922 1.920 1.945

a These column headings are explained in Table 1.

TABLE 6: KSCT

T (K) R1a R11aa R12ba

200 2.41 2.36 1.68
500 1.15 1.14 1.09

1000 1.03 1.03 1.02

a These column headings identify reactions in Table 1.
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those in the corresponding CVT/MT calculations for both the
deuterium and the muonium cases. The reason for this behavior
is illustrated in Figure 6, which is discussed next.

Figure 6 shows the classical energy profile,VM(s), and the
quantal adiabatic ground-state barrier,Va

G(s) (defined in eq 3)
measured from reactants, as functions of theRC-X distance for
the three isotopes. The zero-point-inclusive energy barriers for

the addition are 2.63, 2.47, and 4.44 kcal/mol for R1, R2, and
R3, respectively. At low temperatures without tunneling, where
the height of the zero-point-inclusive energy barrier is the main
factor in determining the rate constant, we obtain the relationship
kD

CVT > kH
CVT > kMu

CVT in the order expected from the order
of the zero-point-inclusive barriers. At high temperatures, the
trend is reversed because the dynamics are now dominated by
the translational partition function. When the tunneling contribu-
tion is included, the behavior at low temperatures changes. Al-
though the barrier is highest for muonium and lowest for deu-
terium, tunneling through the barrier is an exponentially in-
creasing function of the square root of the appropriate reciprocal
mass. Thus, when taking into account the tunneling effect,
kMu

CVT/MT > kH
CVT/MT > kD

CVT/MT at all temperatures considered.
Parts a and b of Figure 7 show the evolution of the generalized

frequencies along the path for reactions R1 and R3, respectively.
Note that the most significant difference is in the value of two
lowest frequencies. These correspond to the two bending
frequencies associated with the forming C-X bond. Nagase et
al. obtained 404 cm-1 for the lowest frequency at the saddle
point, and Hase et al.8 obtained 391 cm-1. In contrast, for
reaction R1 we obtain 374 cm-1 at s ) 0, and 344, 351, 391,
and 417 cm-1 at the canonical variational transition states for
temperatures of 0, 200, 500, and 1000 K, respectively. These
values show that, at least in the middle of the temperature range,
our transition state is similar to previous ones, but it also shows
a significant temperature dependence for this critical frequency.
For reaction R11a, the lowest frequency is 371 cm-1 at s ) 0,
and we obtain 341, 348, 393, and 416 cm-1 at the variational
transitions for 0, 200, 500, and 1000 K, respectively. For reaction
R12b the corresponding values are 288, 246, 248, 300, and 307
cm-1. We find similar but slightly smaller variations in the
second-lowest frequency. These values illustrate the effect of
tightening of the variational transition state asT is raised.

In considering the results in Figure 5 and Table 7, one could
argue that the disagreement that still exists between the experi-
mental and theoretical results in the case of the muonium sub-
stitution could be due to the large anharmonicity in the muonium
case, since anharmonicity has not been included in our calcula-
tions. To test this factor, we have used the data calculated in a
recent work for the muonium-substituted ethyl radical.58 Using
the data in Table 3 of ref 57, we can calculate the contribution
to the zero-point energy of the two bending frequencies in the
ethyl radical that are created during the course of the title
reaction; these data are given in Table 8. (Note that the C-X
stretching mode, which is also created during the addition
process, corresponds to the reaction coordinate, and for this
reason, it is mostly projected out of the generalized normal-

TABLE 7: Primary Kinetic Isotope Effects on X + C2H4, with X ) H, D, and Mu (Reactions R1, R2, and R3 in Table 1)

kMu/kH ) k3/k1 kH/kD ) k1/k2

T (K) CVT CVT/ZCT CVT/SCT exptla CVT CVT/ZCT CVT/SCT exptlb

150 0.04 7.1 17.9 1.04 1.79 2.00
200 0.15 3.0 6.7 17.9c 1.14 1.49 1.61
250 0.34 2.2 4.0 7.1 1.18 1.39 1.45 1.47
300 0.56 2.0 3.2 5.3 1.19d 1.32 1.37 1.45
400 0.98 2.0 2.8 3.3 1.23 1.47 1.49 1.43
500 1.33 2.2 2.6 1.28 1.43 1.45
600 1.61 2.3 2.6 1.30 1.39 1.41
700 1.82 2.4 2.7 1.30 1.37 1.37
800 1.96 2.5 2.7 1.30 1.35 1.35
900 2.08 2.6 2.7 1.30 1.33 1.33

1000 2.17 2.6 2.7 1.30 1.32 1.32

a References 3 and 4.b Reference 3.c Extrapolated.d Cowfer and Michael (ref 2) obtained 1.32 by conventional transition-state theory with
RC-X

q ) 2.10 Å.

Figure 5. Arrhenius plots for the CVT/SCT calculations (lines) for
the X + C2H4 addition, with X) Mu, H, and D. Also shown are the
experimental data: Mu, open triangles;4 H, solid circles;3 D, open
diamonds.3 Rate constants are in cm3 molecule-1 s-1.

Figure 6. VM curves (solid lines) andVa
G curves for X) Mu (dotted

line), H (long-dashed line), and D (short-dashed line) as functions of
the RC-X distance. The solid circles indicate the location of the
maximum of each curve. Although the three reactions have different
VM curves, the differences between them are smaller than the plotting
resolution, and thus, the three lines appear superimposed.
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mode treatment along the path.) For the product of reaction R1,
the contribution to the zero-point energy of the two bending
frequencies is 1605 cm-1 for the anharmonic treatment and 1627
cm-1 for the harmonic one. The contribution in the case of the
product of reaction R3 is 3608 cm-1 in the anharmonic treatment
and 3773 cm-1 in the harmonic one. Thus, the difference in
the zero-point energy of products between the muonium and
the protium addition cases is 2003 cm-1 for the anharmonic
treatment and 2146 cm-1 for the harmonic one. At 200 K this
difference of 143 cm-1 becomes a factor of 2.77 in the

vibrational partition function of products, favorable to the
muonium system. However, this factor is smaller for points
along the reaction path where the value of those bending
frequencies is smaller than in products. (Note that in reactants
those frequencies are not present, and thus, the difference
introduced by anharmonicity in the CVT rate constants is due
only to the transition-state bending frequencies.) To estimate
the effect, we assume the same percentage anharmonicity at
the transition state as at products, which is not necessarily true
but which is probably more accurate than neglecting anharmo-
nicity. Then, as shown in Table 8, the difference between the
muonium and the hydrogen zero-point energy at the transition-
state location at 200 K due to the two bending frequencies in
our calculations is approximately 31 cm-1. The factor that this
difference introduces in the transition-state partition function
is only 1.25, which raises the calculatedkMu/kH from 6.7 to 8.3
but which is clearly is much lower than the ratio between the
experimental and the calculated rate constants. Although an-
harmonicity is significant, it is a smaller effect than tunneling.
Tunneling effects for Mu are quantitatively extremely challeng-
ing to theory.

In Table 9 we present the results for the primary KIEs for
the addition X+ C2D4, with X ) H, D, and Mu (reactions R4,
R5, and R6 in Table 1). In Figure 8 we present the Arrhenius
plots for these reactions compared to the experimental results.
Again, the discrete symbols correspond to experimental data,
and the lines correspond to the CVT/SCT calculations. The
VSEC parameters predict quite accurate rate coefficients for
reactions R4 and R5, and consequently,k4/k5 is quite accurate
too. The correct trend is also obtained for reaction R6, but in
this case, the difference between experiment and theory is bigger
than in reaction R3 (see Figure 5 and Table 7). The reason is
that the calculated tunneling effect in reaction R6 is much lower
than in reaction R3 because of the extremely high sensitivity
of this correction to the height of the∆Va

G profile in the
muonium addition. Thus, while the zero-point-inclusive energy
barriers in reactions R4, R5, and R6 (2.53, 2.35, and 4.36 kcal/
mol, respectively) are very similar to the values for reactions
R1, R2, and R3 (2.63, 2.47, and 4.44 kcal/mol, respectively),
the small difference between the∆Va

G profiles for reactions
R3 and R6 generates a much bigger difference in the tunneling
calculations. As a consequence, the primary KIEs for the
muonium vs protium additions is 3 times bigger at 150 K for

Figure 7. (a) Evolution of the 10 lower generalized frequencies along
the reaction path for the H+ C2H4 addition vs theRC-X distance; (b)
the same for the Mu+ C2H4 addition.

TABLE 8: Contribution of the Transitional Bending Modes
to the Zero-Point Energy for Reaction R3

ZPE (cm-1)

harm. anharm.

Producta

C2H5 1627 1605
C2H4Mu 3773 3608
ZPE(Mu)- ZPE(H) 2146 2003
anharmonicity 0 -143

Transition State
C2H4-H 351b 346c

C2H4-Mu 820b 784
ZPE(Mu)- ZPE(H) 469 438
anharmonicity 0 -31c

a Taken from ref 57.b Direct calculation at CVT transition state at
200 K. c Assuming same percentage anharmonicity as at products.

Figure 8. Arrhenius plots for the CVT/SCT calculations (lines) for
the X + C2D4 addition, with X) Mu, H, and D. Also shown are the
experimental data for these reactions: Mu, open triangles;4 H, solid
circles;3 D, open diamonds.3 Rate constants are in cm3 molecule-1 s-1.
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C2H4 at the substrate than for C2D4. This will influence some
conclusions obtained from the KIEs, as we will see in the next
subsection.

The significant underestimation of the tunneling effect for
the muonium reactions might be regarded as disappointing.
However, the very low mass of the muonium atom, when
combined with the unusually low temperatures studied in this
paper, makes this kind of calculation an extremely hard test of
the theory. It is not clear at this stage of our understanding
whether the error is predominantly due to the potential energy
surface or to the semiclassical nature of the dynamics calcula-
tion. If the former, it is also not clear to what extent the
discrepancy is due to the potential along the reaction path and
to what extent it is due to the potential characteristics transverse
to the path. If the latter (dynamics), it is hard to separate possible
errors in the exponential decay of the wave function in the
tunneling direction from possible error sources due to the way
that quantization is applied to other degrees of freedom,
including anharmonicity and mode coupling.

3.4.2. Secondary Kinetic Isotope Effects.Table 10 presents
the KIEs for the addition reactions H+ C2X4, with X ) H, D
(reactions R1 and R4 in Table 1). The secondary KIEs are close
to 1, as usual, and they go from direct (lighter isotope faster) to
inverse (lighter isotope slower) as the temperature increases.
The tunneling effect does not play an important role in the
secondary KIEs at room temperature and above. Table 10
compares the theoretical values of the KIE to the experimental
results. It can be seen that the trends are reproduced, and the
values for temperatures of 250 K and higher agree very well.
At lower temperatures, however, the agreement between theory
and experiment is not satisfactory probably because of the
difficulty of accurately describing the tunneling at such low
temperatures, as pointed out above.

The comparison between the observed and predicted primary
and secondary KIEs for the R8 reaction is less satisfactory than
the comparison of theory and experiment for R4. The experi-
mental measurements3 are for the sum of the R8a and R8b and
are given in Table 11. Our results disagree with experimental
results for the direction of the KIE for R8 in that the calculated
k1/(k8a + k8b) (Table 11) is less than unity, although theory
agrees that the KIEs approach unity as the temperature increases.

3.4.3. Simultaneous Primary and Secondary KIEs.It is
interesting to see if the rule of geometric mean59-61 (RGM) holds
in this system. This rule states that

where A, B, and AB denote respectively deuterium or muonium
substitution at position A, position B, and both. This relation
may be derived by assuming conventional transition-state theory
with no tunneling and no coupling between the motion of
substituents at A and B. In other words, this rule expresses the
consequence of having independent motion at different locations
in the molecule. To test the RGM, we compare the value
obtained by using the RGM,

with the KIEs obtained by performing double isotopic substitu-
tions,k5/k1 andk6/k1. The final results are plotted in Figure 9.
It is clear than the RGM holds very well for deuterium addition
but not for muonium addition. The reason for this breakdown

TABLE 9: Primary Kinetic Isotope Effects on X + C2D4, with X ) H, D, and Mu (Reactions R4, R5, and R6 in Table 1)

kMu/kH ) k6/k4 kH/kD ) k4/k5

T (K) CVT CVT/ZCT CVT/SCT exptla CVT CVT/ZCT CVT/SCT exptlb

150 0.04 3.0 5.6 1.03 1.69 2.00
200 0.16 1.67 2.7 15.6c 1.12 1.47 1.61
250 0.35 1.47 2.0 6.3 1.16 1.37 1.47 1.45
300 0.58 1.49 1.9 5.0 1.19d 1.33 1.39 1.41
400 1.02 1.79 2.0 3.6 1.22 1.45 1.49 1.37
500 1.39 2.00 2.2 3.0c 1.28 1.43 1.45
600 1.67 2.2 2.3 1.30 1.39 1.41
700 1.89 2.4 2.4 1.30 1.35 1.37
800 2.00 2.4 2.6 1.30 1.33 1.35
900 2.1 2.5 2.6 1.28 1.32 1.32

1000 2.2 2.6 2.6 1.28 1.30 1.30
a References 3 and 4.b Reference 3.c Extrapolated.d Cowfer and Michael2 obtained 1.36 by conventional transition-state theory withRC-X

q )
2.10 Å.

TABLE 10: Secondary Kinetic Isotope Effects on H+ C2X4,
with X ) H and D (Reactions R1 and R4 in Table 1)

kH/kD ) k1/k4

T (K) CVT CVT/ZCT CVT/SCT exptla

150 1.15 1.08 1.14
200 1.08 1.04 1.09
250 1.05 1.03 1.05 1.04
300 1.03 1.03 1.04 1.03
400 1.02 1.01 1.02 1.02
500 1.01 1.00 1.00
600 1.01 0.99 1.00
700 1.00 0.99 1.00
800 1.00 0.99 0.99
900 0.99 0.99 0.99

1000 0.99 0.99 0.99

a Values taken from ref 3.

TABLE 11: Kinetic Isotope Effects on H + C2H3X, with X
) H and D (Reactions R1, R8a, and R8b in Table 1)

k1/(k8a + k8b)

T (K) CVT/SCT exptla

150 0.97
200 0.98
250 0.99 1.04
300 0.99 1.03
400 0.99 1.02
500 1.00
600 1.00
700 1.00
800 1.01
900 1.01

1000 1.01

a Values taken from ref 3.

KIE(AB) ) KIE(A) × KIE(B) (12)

KIERGM(D) )
k2

k1

k4

k1
(13)

KIERGM(Mu) )
k3

k1

k4

k1
(14)
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is the large multidimensional tunneling effect present in the
muonium case, which involves modes whose coupling affects
the results significantly. We confirmed this by testing the RGM
by using CVT rate constants with no tunneling correction; in
that test the differences between the calculated and the RGM-
estimated KIEs are never larger than a 5%. It is also interesting
to note that although the final calculations for reaction R5
deviate significantly from experiment (Figure 8), the deviation
would be much larger if we used the RGM to predictk6. This
provides an unusual but welcome confirmation of the qualitative
correctness of the way modes are coupled in the present
multidimensional tunneling calculations. The breakdown of the
RGM rule has also been observed by some of the authors in a
recent study of tunneling effects in enzymatic reactivity; in that
case the RGM breaks down even for D substitution.62

In Table 12 we list our calculatedk1/(k10a + k10b) ratio, to
compare it with another experimentally measured KIE from ref
3. The calculatedk1/(k10a + k10b) is in good agreement with
experiment forT g 250 K.

3.4.4. RegioselectiVity. In this subsection and the following
we present our predictions for positional selectivity and cis-
trans effects.

Figure 10 shows the KIEs for the addition of protium to
different substrates (reactions R7, R8, and R11 in Table 1). All

KIEs are with respect to reaction R1. The first observation is
that at high temperatures the curves approach asymptotically a
value that equals the ratio between theσ factors. The different
patterns of isotopic substitution show more interesting trends
at lower temperatures. After examining the different contribu-
tions to the reaction rates, we concluded that the main
contribution to the differences in the KIEs for reactions R7,
R8, and R11 comes from the vibrational partition function at
the transition state. For example, the main factor in the ratio
k8a/k8b is the change in the frequencies of the out-of-plane normal
modes in the ethylene. Furthermore,k8a/k8b at 150 K is 1.14 at
the CVT level and 1.09 at the CVT/SCT level. The small
reduction of the ratio due to tunneling is associated with the
fact that the zero-point-inclusive energy barrier is slightly higher
for reaction R8b than for reaction R8a (2.62 vs 2.58 kcal/mol).
Clearly, the final quantitative value of the ratio depends on a
delicate balance between tunneling and the vibrational partition
functions. Figure 10 shows that at low temperatures protium
prefers to add at the most substituted carbon.

Analogously, Figure 11 shows KIEs for the addition of
deuterium to different substrates (reactions R9, R10, and R12
in Table 1). In these systems we note how the positional
selectivity is stronger at lower temperatures. The large values
of the KIE below 200 K are due to the tunneling contribution.
The conclusions about the origin of the differences between

Figure 9. RGM check for the muonium and deuterium additions to
C2H4 and C2D4. KIEcalc corresponds tok1/k6 for the muonium case and
to k1/k5 for the deuterium case. KIERGM corresponds to the productk3k4/
k1

2 in the muonium case and to the productk2k4/k1
2 in the deuterium

case.

TABLE 12: Kinetic Isotope Effects on D + C2H3D
(Reactions R10a and R10b in Table 1)

k1/(k10a+ k10b)

T (K) CVT/SCT exptla

150 1.92
200 1.59
250 1.45 1.39
300 1.35 1.37
400 1.47 1.35
500 1.43
600 1.39
700 1.37
800 1.35
900 1.33

1000 1.32

a Values taken from ref 3.

Figure 10. k1/kX KIE, whereX ) 7a, 7b, 8a, 8b, 11a, 11b, as a function
of temperature.

Figure 11. k1/kX KIE, where X ) 9a, 9b, 10a, 10b, 12a, 12b, as a
function of temperature.
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reactions RXa and RXb for X ) 9, 10, and 12 in Figure 11 are
the same as those forX ) 7, 8, and 11 in Figure 10.

Deuterium also prefers to add to the most substituted position.
The finding that addition to the most substituted carbon is

kinetically favored can be compared to the experimental finding
in many recent articles63-65 that substitution occurs at the least
substituted position. Several issues need to be considered to put
these effects in context. First, we note that the word “substituted”
is ambiguous; in this article it refers to replacing H by D.
However, when it is compared to replacement of H by a bulkier
substituent or a substituent of different electronegativity, it is
not clear that this is the correct viewpoint.66 Consider first steric
effects. Melander and Saunders66 have pointed out that, owing
to its wider zero-point motion, the vibrational probability
distribution of a carbon-protium oscillator is wider and more
space-demanding than that of a carbon-deuterium oscillator.
Thus, for steric effects it would not be at all surprising if protium
sites (CH2) play the role of substituted sites and deuterium sites
(CD2) play the role of unsubstituted sites (with the same
considerations for CHD vs CD2 or CH2 vs CHD). Inductive
effects are more complicated and not totally separable from
steric effects, but deuterium substitution for protium leads to
effects very similar to those of lowering the electronegativity
of a substituent by a minute amount.66 If inductive effects are
dominant, then deuterium substitution should correlate with
electron-donating substitution (like alkylation) but not with
electron-withdrawing substitution (like halogenation). Electro-
meric effects presents additional complications. Thus, the
regioselective directing powers of deuterium substitution can
be straightforwardly compared to other substituent effects on
regioselectivity only when the dominant factor controlling the
direction of the effect has been identified. The discussion earlier
in this section shows that the bending vibrations are critical to
the direction of the effect in the present case.

3.4.5. StereoselectiVity. The last KIE considered in the present
work is the preference for addition to either the cis or trans
isomers of CHDCHD (reactions R13-R16 in Table 1). To test
this preference, we have calculated the ratiosk13/k14 and k15/
k16. Both ratios are approximately 1 at all temperatures,
indicating no special preference for the addition to cis or trans
isomers of the ethylene molecule.

4. Concluding Remarks

The present calculations were made possible by several recent
advances in the methods for direct dynamics calculations. The
calculation of the reaction path and reaction-path Hessians at
the QCISD/6-311G(d,p) level was facilitated by using a dis-
tinguished-coordinate path (DCP), which allows much larger
step sizes than a minimum-energy path (MEP). The use of a
DCP for dynamics calculations (determination of the least
recrossed dividing surface and multidimensional tunneling
calculation including reaction-path curvature) is made possible
by the reorientation of the dividing surface (RODS) algorithm.
The RODS algorithm also allows one to carry out dynamics
calculations for all isotopic variations of the reaction, ranging
from Mu to D (a factor of 17.6 in mass) from a single mass-
independent reaction path with a single set of mass-independent
Hessians. Redundant internal coordinates have been used to
define curved generalized-transition-state dividing surfaces; this
yields physical frequencies for the generalized normal modes
transverse to the reaction path. The various directly calculated
reaction-path quantities were interpolated by the recently
developed mapped interpolated variational transition-state theory
(IVTST-M) algorithm based on a spline under tension along a
physically mapped reaction coordinate. All these capabilities

are available in version 7.9 of thePolyratecode, and the present
application provides a good example of how powerful they are
when used in concert. Furthermore, these dynamics calculations
were combined with the recently developed variable scaling of
external correlation (VSEC) procedure for scaling the correlation
energy in order to make the energy profile along the reaction
path more accurate than could be obtained with unscaled
calculations.

The new methods have drastically reduced the number of
electronic structure calculations required for calculating rate
constants and kinetic isotope effects, and therefore, these
calculations can be carried out at very high ab initio or
semiempirical levels. In the present work we have demonstrated
these techniques by the study of several isotopic substitutions
in the H+ C2H4 free radical addition reaction. Comparison of
calculated kinetic isotope effects (KIEs) to experimental results
allows one to test and to validate the aspects of the implicit
potential energy surface to which the results considered here
are sensitive. Appropriately validated models may be used to
make predictions about the rates of reactions not measured
experimentally. Canonical variational transition-state theory with
multidimensional semiclassical tunneling calculations has been
shown to provide a very useful tool for such studies.

The results show that the importance of the tunneling effect
for the primary kinetic isotope effects and reaction rates
increases in the series deuterium-protium-muonium. The
secondary kinetic isotope effects are close to unity, varying from
normal at low temperatures to inverse at higher temperatures.
We have found that the rule of the geometric mean (RGM) is
approximately satisfied for D but not for Mu.

We have also studied the regioselectivity and stereoselectivity
of the addition process. We have found that addition at the more
substituted carbon is more favorable for both hydrogen and
deuterium, especially at low temperatures. On the other hand,
no special preference has been found for the addition tocis or
trans isomers of the isotopically substituted ethylene molecule.
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